
  

Figure 1: Spyndra printed in a camouflaged brick pattern 
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Abstract— This paper describes Spyndra, a quadruped 

robot created as an open source platform for studying 

machine self-awareness. Our key hypothesis is that a 

machine is self-aware to the degree it can simulate itself, 

and that self-simulation is essentially the ability to predict 

sensations from actions. In order to facilitate studies in this 

direction, we create the first of what we see as a series of 

open platforms that provide rich proprioceptive feedback. 

This paper provides descriptions of Spyndra’s hardware 

and software and an analysis of two Inertial Measurement 

Unit (IMU) datasets to illustrate Spyndra’s competency as 

a machine learning platform. After establishing this, we 

describe our methods to progress in machine learning, and 

thus also include data from machine learning models, an 

example simulation model, and a comparison between a 

simulated gait and real gait that allow us to begin pushing 

the boundaries towards what a machine can model of its 

own actions. These series of information can serve as a 

baseline for future studies.  

I. INTRODUCTION 

UESTIONS over the nature of self-awareness and 

conscious-ness have occupied philosophers and 

physicians for millennia. The relatively recent advent of 

robotic systems, combined with machine learning 

technologies, has opened a new window into these age old 

questions. For the first time, some of the prevailing 

conjectures or models can be put to a test. 

The key hypothesis we aim to study is the idea that 

consciousness, or self-awareness, is essentially the ability to 

self-simulate, or to perform ‘mental time-travel,’ and that 

emotions are essentially internal appraisals of that prediction. 

A second aspect of our working hypothesis, is that 

self-awareness is not a black-or-white characteristic that 

creatures either possess or not. Alternatively, self-awareness 

lies on a continuum from machines with no self-awareness to 

human-level self-awareness, and beyond. If true, this 

hypothesis implies that we can begin experimenting with 

systems that might possess minute amounts of self-awareness.  
Spyndra is a robotic platform that could potentially be 

capable of a small level of self-awareness. Utilizing min-imal 

proprioceptive sensation to track its internal motor commands 

 
 

and record its own orientation and acceleration, Spyndra can 

learn about its physical form. We hope that by sharing this 

platform and data produced by it, researchers engaged in this 

line of research can study self-awareness on a common 

platform. 

Growth within the robotics field has traditionally been 

limited by barriers to entry such as expensive components and 

complex, inaccessible manufacturing. By contrast, Spyndra 

was designed as an open source platform, using off-the-shelf 

electronics and 3D printed, easily-assembled hard-ware, with 

all necessary files and instructions available on the project’s 

website. Table 1 provides a comparison of similar low cost 

walking robots, both academic and hobby in origin. Spyndra is 

comparable in price to these alternatives, at approximately 

$600 to build and operate. Furthermore, by limiting the DOF 

to eight, Spyndra reduces the complexity of potential gaits, 

making machine learning a more computationally tractable 

problem. Calibration procedures designed specifically for the 

robot ensure synchronicity be-tween software and hardware 

and the repeatability of experiments. We have also developed 

control software for Spyndra, allowing gaits generated 

through machine learning to be seamlessly commanded to the 

robot, as well as a dataset of IMU readings that can serve as a 

baseline for further re-search. Though this paper presents 

Spyndra in its first version, the public availability of native 

files, including Python scripts and CAD files, allows for 

crowd-sourced customization and improvement of the system 

as it is adopted. 
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 Image Price Open-source 

hardware 

Sensors “DoF”  # & type 

Spyndra[12]  

 

$575 Yes: provides 

STL and CAD 

IMU - 1, camera 8 - rotary 

Instructables  

Arduino 

Quadruped [13] 

 

 

$540 Yes Triple axis 

accelerometer 

12 - rotary 

RobotShop 

Lynxmotion SQ3U 

Symmetric 

Quadruped Walking 

Robot 

[14] 
 

$550  No: assembly 

kit 

Not listed 12 - rotary 

Instructables 

Spider Robot 

[15] 

 

 

~$100  Yes: provides 

STLs, not CAD 

Not listed 12 – rotary 

A 3D Printed 

Quadruped Robot 

(Instructables 

 

~$450 Yes: provides 

STLs and CAD 

Not listed 12 – rotary 

Aracna [17] 

 

$1,350 Yes: provides 

STL and CAD 

Not listed 8 – rotary 

Hexy – 

Programmable 

Hexapod Kit [20] 

 

 

$250 Yes: provides 

Code, Laser 

Cutter 

DXF/STL/CA

D files 

Ultrasonic Distance 

Sensor 

18 - rotary 

Lynxmotion A-Pot 

Hexapod [19] 

 

$1499 

(No electronics) 

No: assembly 

kit 

Force Sensors 18 - rotary 

TABLE 1: COMPARISON OF SPYNDRA TO SOME OTHER WALKING ROBOTS LESS THAN $1,500

http://www.creativemachineslab.com/spyndra.html
http://www.instructables.com/id/Synopsis/
http://www.instructables.com/id/Synopsis/
http://www.robotshop.com/en/lynxmotion-sq3u-symmetric-quadruped-walking-robot.html?gclid=EAIaIQobChMI34_tkIX80gIVBwNpCh19jQC3EAYYASABEgLHPPD_BwE
https://www.instructables.com/id/A-3D-Printed-Quadruped-Robot/
https://www.instructables.com/id/A-3D-Printed-Quadruped-Robot/
https://www.instructables.com/id/A-3D-Printed-Quadruped-Robot/
http://www.pnas.org/content/108/4/1234.abstract


  

II. HARDWARE 

The hardware strikes a balance between being 

user-friendly to a wide audience and sophisticated enough to 

achieve a wide variety of tasks. The website includes a bill of 

materials, all native CAD and STL files, and instructions on 

how to fabricate and assemble the hardware, integrate the 

electronics, and implement the software. Spyndra’s sensor 

systems include a camera and an Inertial Measurement Unit 

(IMU). These sensors provide information necessary for 

Spyndra to develop a model of itself and interact with its 

environment. The hardware can be customized to 

accommodate additional sensors. 
 

For convention, this paper will refer to the upper section of 

each leg as the ‘Femur,’ and the lower section as the ‘Tibia’ as 

illustrated in Figure 2. A central chassis holds the Raspberry Pi 

3B micro-controller, Lithium-ion battery (power source of the 

controller), and a Lithium polymer battery (power source for 

the servo motors), as well as several sensors. The chassis also 

houses four servos linked to the femur. 

Unlike Spyndra’s Creative Machines Lab predecessor, 

Aracna, the eight high-torque metal gear analog servo motors 

(Power HD 1501MG) directly drive each joint of the robot [5]. 

The two-pronged femurs support both sides of the motors to 

prevent load paths orthogonal to the motors intended axis of 

motion. Adhering to this design principle maximizes servo life 

and improves Spyndra’s overall robust-ness. The motors slide 

effortlessly into place in both the chassis and tibia, and are 

connected to the femur using standard servo horns. This direct 

drive, as opposed to Aracna’s linkage system, results in low 

friction/low hysteresis motion that can be more accurately 

represented in simulation.  

Spyndra is comprised of entirely 3D-printed parts, with all 

necessary STL files available on the project’s website. The 

parts are nominally designed and tested for fabrication via 

Fused Filament Fabrication [9] using typically low cost 

desktop 3D printers (Ultimaker 2 Extended+) which enables 

the design of topologically complex bio-inspired parts. 

 

Figure 2: Labeled and dimensioned drawing of Spyndra 

The recommended materials are Polylactic Acid (PLA) 

and ABS plastics, which are inexpensive and allow for the 

simple application of heat-inserts for fastening. We also 

fabricated Spyndra models using a Stratsys J750 printer which 

uses PolyJet technology [9] to achieve full color and 

multi-material printing, as shown in Figure 1. The organic 

textures on these experimental models challenge the metallic 

motif which we have come to accept for modern day robots 

such as BigDog. 

Various 3D printer settings, including wall-thickness, infill 

density, and layer deposition orientation, have been iteratively 

tested. Hardware failure was initially a recurrent issue with 

repeated use, however incidences of fracture have been 

reduced, almost to entirety, through minor design revisions 

and enhanced printer settings. Optimized settings and print 

orientations for Ultimaker 2.0 3D printers can be found on the 

project website. 

Designed for ease of assembly, the components are either 

pressfit or fastened using screws and heat-set inserts. No 

adhesives are needed in the assembly of Spyndra. The only 

tools necessary to assemble Spyndra are a few screw-drivers 

and a soldering iron.  

Powered by two batteries, Spyndra can function as an 

untethered robot. The Raspberry Pi 3 can either be 

programmed to execute autonomous programs upon booting, 

or receive commands wirelessly via USB, Bluetooth, or SSH 

protocol. Spyndra’s present design can run for approximately 

twenty minutes on one charge, but extra Lithium polymer 

batteries for the servo motors can be added to in-crease 

lifespan. 
 

Spyndra costs around $600 to build and operate. The price 

breakdown can be seen in Table 3. If printed with 

recommended settings using PLA filament, Spyndra weighs 

1.55kg. However, further lightweighting and cost reduction 

can be accomplished by reducing infill settings, using lower 

torque motors, and higher strength printing materials. These 

changes may come at the expense of component robustness 

and lifespan. 

3D Printing Materials $70   

Controller Raspberry Pi 3 + Adafruit 

 Servo Hat:  

 $55   

Motors 8 x Power HD 1501MG: 

 $160   

Batteries Li-Ion, LiPo, Battery 

 Charger, Voltage Regula- 

 tor: $115   

Sensors BNO055 IMU, Camera: 

 $75   

Misc. Electronics and  

Fasteners $120   

Table 3: Cost breakdown of Spyndra 

To minimize mass, Spyndra uses a small Raspberry 

Pi-compatible camera. The camera interfaces with Spyndra’s 

software by using the Raspicam commands native to the 

Raspberry Pi. The visual information from the camera, 

cou-pled with deep learning networks, offer a multitude of 

capa-bilities, including object recognition and the ability to 

obtain depth information. The camera has so far been used for 

http://www.creativemachineslab.com/spyndra.html
file:///C:/Users/user/Desktop/Spyndra_ECAL_Submission.doc%23page3
file:///C:/Users/user/Desktop/Spyndra_ECAL_Submission.doc%23page9
file:///C:/Users/user/Desktop/Spyndra_ECAL_Submission.doc%23page9
file:///C:/Users/user/Desktop/Spyndra_ECAL_Submission.doc%23page9
file:///C:/Users/user/Desktop/Spyndra_ECAL_Submission.doc%23page9
file:///C:/Users/user/Desktop/Spyndra_ECAL_Submission.doc%23page4


  

im-age recognition, with the ultimate aim of finding 

waypoints for path planning.  
Adafruit’s BNO055 is the Inertial Measurement Unit (IMU) 

used for measurements of acceleration, rotation, and magnetic 

orientation each along three dimensions and pro-vides primary 

feedback for gait generation. Using integra-tion, the IMU can 

provide a variety of information about Spyndra’s physical 

state, such as its position, velocity, and acceleration. Since the 

Spyndra architecture exhibits two-way symmetry, the IMU is 

placed in the geometric center of the chassis so it collects the 

most inertially relevant data. The output from the IMU can be 

used to train Spyndra’s algorithms to improve its ability to 

learn to walk. 

III. GAIT GENERATION SOFTWARE 

Spyndra’s software suite currently consists three spline 

generation scripts and two runner scripts. The first spline 

generator is a random spline generator, which creates two 

random arrays of five points each, one array corresponding to 

femur position, and the other tibia position. The generator then 

fits the arrays to splines, and outputs a large array of 

percentages to be mapped to motor angles, see Figure 4. The 

five auto generated points are also tested for high deviation, 

and points too far away from each other are re-generated to 

avoid erratic movements which can damage the servo motors. 

This process results in a “random gait,” which will be realized 

on the hardware using a runner script. The second spline 

generator produces what we call a “standing gait.” It works 

similarly to the first but always produces the same motor 

angles, in which Spyndra has no translational movement, but 

only gyrates the chassis. This gait is meant for IMU calibration 

and testing. The third spline generator produces a “manual 

gait.” The user inputs the desired number of motor coordinates 

for Spyndra’s femur and tibia joints, and the generator fits 

these motor coordinates to a spline which is then outputted as 

an array of motor angles. For all three gait generators, the user 

can decide the number of times the spline is repeated. 

The first runner script takes the output of any of the three 

generators and parses the splines, with each leg running the 

same spline. First, the program prompts the user for the 

desired phase offset, which is the amount of lag between legs 

as they run the spline. The spline, which consists of an array of 

percentages, is then mapped to the appropriate maximum and 

minimum motor angles (interpreted as PWM signals) which 

are referenced from a calibration log file. The PWM signals 

are sent to the servo motors while the IMU data is logged in a 

separate file. The second runner script is identical to the first, 

but accepts a time offset between legs, as opposed to a phase 

angle. 

Before executing the gait, both runner scripts first slowly 

move Spyndra to a standing position with the femurs parallel 

and the tibias perpendicular to the robot’s chassis. Once 

Spyndra is standing, the designated spline runs for the de-sired 

amount of loops. Finally, once the spline has finished running, 

Spyndra is moved to a sitting position where the tibia and 

femur are outstretched and the robot is resting on its chassis. 

Upon completion, any random gait generated has the option to 

be saved to a log file if desired. 

 
(a) 

 
(b) 

Figure 4: Random points generated for gait are (a) fit to spline, 

then (b) the spline is sampled to produce the gait. 

IV. CALIBRATION 

To ensure the repeatability of gaits, proper calibration of 

Spyndra is key. When properly calibrated, all four of 

Spyndra’s legs will go to the same physical position when 

given the same PWM command, as illustrated in Figure 5. The 

robot consists of 8 servo motor actuators that are connected to 

the legs using servo horns (as discussed in Section : 

Hardware). The servos have a travel limit of roughly 165 

degrees, and the horns must be attached in the proper 

orientation. To ensure that all limbs are properly calibrated, 

we have engineered a combined mechanical and software 

approach. First, the motors are unplugged and shifted all the 

way back to the maximum angle (counter clockwise for tibia, 

clockwise for femur). A mechanical jig is then placed and used 

to attach the horn to each legs servo motor as shown in Figure 

6. This provides a rough calibration, but the coupling 

mechanism of the horn limits the precision of each legs 

orientation to within 14 degrees. 

file:///C:/Users/user/Desktop/Spyndra_ECAL_Submission.doc%23page5
file:///C:/Users/user/Desktop/Spyndra_ECAL_Submission.doc%23page5
file:///C:/Users/user/Desktop/Spyndra_ECAL_Submission.doc%23page5


  

 
Figure 5: Range of motion of tibia and femur with 

corresponding PWM signals 

 

 

Figure 6: The 3D printed mechanical jig (grey) is placed 

on the motor and guides the coupling of the servo horn (black) 

to the proper orientation. 

Second, to further refine Spyndra’s leg calibration, we lay 

Spyndra on a flat surface and raise its femurs and tibias to their 

maximum positions. Then, one at a time, each femur is 

lowered until it touches the flat surface. The angle at which 

contact occurs is recorded for each individual femur, and these 

angles are used to define the range of motion of each femur. 

The femurs are then raised ten degrees above con-tact, and the 

same process is done for the tibias. The lowest increment of 

angle is about 0.4 degrees, so all the legs are calibrated within 

0.4 degrees of each other. This allows users to design gaits that 

can treat each leg as equivalent to the others. Figure 7 

demonstrates this process. 

V. IMU DATASET  

To demonstrate Spyndra’s suitability as a robotic gait 

machine learning platform, we wanted to ensure that our data 

is replicable by first taking two datasets using IMU 

measurements. These datasets demonstrate the repeatability of 

measurements and can serve as a baseline for future gait 

studies. 

Both datasets consist of time, yaw, pitch, roll, 

x-acceleration, y-acceleration, and z-acceleration data from 

Spyndra. In the first, Spyndra performs the “standing gait” 

(described in the Section: Gait Generation Software), with a 

phase offset of 45 degrees. In this “standing gait,” Spyndra 

slowly gyrates the chassis while standing stationary.phase 

offset of 90 degrees. In this “standing gait Spyndra slowly 

gyrates the chassis while standing stationary. 

The second dataset was recorded as Spyndra performed a 

stored randomly generated “walking gait,” with the pattern 

shown in Figure 4a. A phase offset of 45 degrees was used 

between legs. As friction of the walking surface affects 

Spyndra’s gait, it is important to note that the experiment was 

conducted on a linoleum floor. The first dataset includes data 

from 8 runs while the second dataset includes data from 14 

runs. 

The sequence for each 

leg starts with the 

Spyndra on a flat 

surface. The femur 

and tibia are raised to 

The femur is lowered 

until it touches the flat 

surface at its lowest 

point. The PWM 

period of this point is 

recorded 

The femur’s position 

is raised twelve 

degrees from the 

position of contact. 
  

Now, the tibia is 

lowered until it 

touches the flat 

sur-face at its lowest 

point. The PWM

Figure 7: The calibration sequence for a single leg 

file:///C:/Users/user/Desktop/Spyndra_ECAL_Submission.doc%23page6
file:///C:/Users/user/Desktop/Spyndra_ECAL_Submission.doc%23page6


  

 

Figure 8: A frame by frame illustration of Spyndra’s “walking gait” measured for IMU dataset. Camera position is 

fixed 

Figure 9: IMU data plotted against time. Gyroscopic data in degrees, acceleration data in m=s2 

(a) Standing (b) Walking 



  

 

Figure 10: Illustration of the “walking gait” performed by 

Spyndra for data collection. An offset of 45 degrees was used 

between legs. 

For both experiments, standard hardware was used, and 

Spyndra’s motors were powered by the LiPo battery so it 

could move untethered. The raw data can be found on the 

Spyndra website as well as the Python script used to process it. 

Data processing included filtering of anomalous high and low 

values, use of a median filter to remove sharp spikes in data, 

and normalizing of data to account for differences in initial 

orientation. 

 Standing Walking 

Correlatio

n 

STD Correlatio

n 

STD 

Yaw 0.8746 1.3201 0.3896 6.5146 

Pitch 0.9664 1.6955 0.9263 3.6387 

Roll 0.9582 1.0643 0.8124 1.9879 

X 0.8209 0.2881 0.8063 0.7994 

Y 0.8746 0.1849 0.8403 0.3191 

Z 0.9840 0.0420 0.5062 11.4575 

TABLE 4: DISTRIBUTION OF CORRELATION COEFFICIENTS OF 

IMU DATA ACROSS REPETITIONS 

VI. MACHINE LEARNING 

In order to achieve self-awareness, we set up two 

problems: global movement prediction and IMU prediction. 

The global movement problem aims at predicting the distance, 

direction and orientation by the 5 random interpolate points 

for femur and tibia as input features. This problem is important 

for path planning. Given a high-level route, the robot should 

be able to generate the appropriate gait to follow such a route. 

 
Figure 11: Definition of Global Measurements 

Figure 12: Definition of Global Prediction Problem 

 

 Linear Regression Ridge Regression 

Training 

MSE 

Testing 

MSE  

Training 

MSE 

Testing 

MSE 

Distance 353.04 1315.17 371.45 1019.92 

Direction 1.31 9.17 1.44 6.62 

Orientation 0.0026038 0.031480 0.027071 0.019467 

Table 5: Evaluation of Global Prediction 

 

We used two baseline models to predict robot motion: 

linear regression and ridge regression. The mean square errors 

of both methods are shown in Table 5. 

One example of our prediction testing is shown in Figure 

13. Neither the linear regression nor the ridge regression 

predicted the global measurement precisely. Since the 

direction and the orientation are related to yaw, and yaw is the 

least repeatable feature, it is likely that the direction and the 

orientation are hard to predict as well. 

Figure 13: Global Prediction (red: ground truth, blue: linear 

regression, green: ridge regression) 

 

 

IMU prediction, on the other hand, deals with the problem 

of predicting the current state (yaw, pitch and roll) and 

acceleration based on motor commands and previous IMU 



  

measurements. A motor command consists of 8 motor angles, 

and an IMU measurement consists of yaw, pitch, roll and 

x-y-z acceleration. This kind of self-awareness focuses on 

how the actions of the robot interact with itself and the 

environment. For example, the trained model should be able to 

adapt to either a slippery ground or a tilted surface ideally, 

depending on the motor command (action) and IMU 

measurement (environmental feedback). 

Because a gait is a time-dependent motion, it is likely that 

the robot’s previous time-step is as important as motor 

commands. Hence, we merged the motor command and IMU 

measurements from previous the time-steps as input features. 

The architecture of our neural network is shown in Figure 14. 

Figure 14: Architecture of fully-connect neural networks 

To experiment with different neural networks, 14 random 

walks were used for training and 4 other random walks were 

used for testing. We compared the performance of using one, 

two and three time-steps of information and listed the results 

in Table 6. 

 MSE Avg. Correlation Coef. 

Training  Testing  Training Testing 

Current 

step 

1.0538 1.0115 N/A N/A 

1 step 0.2115 0.4334 0.9096 0.8088 

2 step 0.1905 0.2691 0.9236 0.8863 

3 step 0.1876 0.3384 0.9354 0.8310 

Table 6: Evaluation of IMU Prediction 

It was observed that the neural networks failed to make 

meaningful predictions without previous commands and 

measurements. This fact verifies our assumption that the state 

of the robot depends on the robot’s previous state. 

 

                      (a)                                         (b) 

                       

                       (c)                                         (d) 

Figure 15: Ground truth (blue) and prediction (orange) of pitch 

of (a) without previous step features (b) 1 step model (c) 2 step 

model (d) 3 step model. 

Although the third order model achieved the lowest mean 

squared error and highest correlation in training phase, the 

second order model did better in testing phase. One possibility 

is that the neural networks began to overfit the training dataset 

after introducing features from 3 time-steps before. In this 

case, adding more training data may alleviate the overfitting 

issue. Another possibility is that 2 time-steps is the optimal 

feature set for our purpose. 

VII. SIMULATION MODEL 

In order to acquire the best feature set, we need a larger 

dataset to rule out the possibility of overfitting. We were also 

aware that data collection is a time-consuming process. This 

motivates us to build a model that generates IMU 

measurement based in a simulation environment. With a 

simulation model, we are able to generate training data 

quickly and hence accelerate the development process. Plus, 

we can experiment with different sensors which we do not 

have in the real world. For instance, the global data was 

measured manually, because Spyndra does not have any 

localizing sensor. In ROS, however, we can obtain the 

position with lines of code. 

Our first model was built on Adams, a popular software for 

calculating vehicle dynamics. However, Adams had some 

limitations when we applied it to simulate Spyndra. The servo 

motor of Spyndra has a built-in closed-loop controller to deal 

with the error. Even if it is able to calculate the acceleration 

and pose of the robot, it does not account for the error between 

the actual motion and command. Moreover, its integration to 

other software is limited. We could only simulate through its 

graphical user interface, which makes it hard to automate the 

process of data collection. 

Such limitations led us to choose the Robotics Operating 

System (ROS) and Gazebo as our new simulation tool. ROS 

provides comprehensive libraries, software and tools for 

general robot platforms. With ROS, we have every component 

just like the physical robot. We used its proportional–integral–

derivative (PID) controller to mimic the behavior of the servo 

motors. ROS also provides an IMU sensor plugin with which 

we can generate IMU measurements. 

For simplicity, we modeled Spyndra with simple blocks 

and cylinders as shown in Figure 8. We also specified the 

dynamic properties such as moment of inertia and mass. After 

setting up the robot description, the physics engine of Gazebo 

simulated the motion of given motor commands.



  

Figure 16: Simplified model description 

 

Figure 17 – Software framework of Spyndra 

 

In order to validate the simulated IMU data, we wrote a 

program that takes in a past walk, simulates it and compares 

IMU measurements. The normalized data of a simulated 

standing gait and walking gait are presented in Figure 8. It can 

be observed that acceleration of x, y direction have a higher 

correlation, which corresponds to higher repeatability. 

There are two reasons for such divergence between the 

simulation and reality. One reason is that the simulation model 

assumes that the material is homogeneous, whereas the robot 

has a hollowed structure due to 3D printing. The center of 

mass (COF), as a result, might be skewed to a side. Since the 

walking is highly related to translation of center of mass, it is 

not surprising such skewed COF affects the pose of Spyndra. 

Another factor is the quality of the physics engine. During the 

simulation, the legs of the model were sometimes shaking 

because the physics engine did not handle the computation 

well. This introduced extra perturbation to the simulated IMU 

data. 

Even though the simulation has noticeable differences to 

the real data, it is an effective way of generating various 

training data. The gait does not necessarily have to be spline 

functions. It can be either simple sinusoidal waves or Gaussian 

processes. The simulation model allows us to parallel the 

processes of collecting data on the physical robot and develop 

machine learning algorithm. Therefore, we wrote a 

programming interface to ensure that the application applies to 

both simulation and physical experiments. The planned 

software framework is shown in Figure 17. 

                                     (a)                                                                                                            (b) 

Figure 18: ground truth (blue) and simulation (orange) of (a) standing gait (b) walking gait 



  

VIII. CONCLUSION 

We have introduced Spyndra: an open source quadruped 

robot meant to serve as a platform for robotics and AI 

re-searchers interested in self-awareness. Comprised of 

3D-printed parts and off-the-shelf hardware, Spyndra is 

inexpensive, easy to assemble, yet achieves complex 

kinematics. We have also constructed a few basic machine 

learning models to begin allowing Spyndra to create its 

self-model; these machine learning models are also 

compatible with both Spyndra’s hardware and the simulated 

version for better data acquisition. To aid in the 

implementation of machine learning for others, open source 

control software, a set of baseline IMU data, machine learning 

code, and simulation files are available for future researchers. 

These materials make Spyndra ideal for hardware 

implementation of machine learning and self-modelling 

software, and we hope it will serve as a common starting point 

among roboticists, academics, and the broader AI community. 

In the future, we would like to strengthen Spyndra’s 

capabilities as a self-modeling platform by increasing the 

feed-back sensors on board using the features we extract from 

our simulation. With additional proprioceptive sensors, 

Spyndra can learn more about itself. In addition, we will 

collect more data from the IMU, growing the publicly 

available dataset, and continue enhancing our current machine 

learning models. 
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